Problem 1.18

Elevator and falling marble

At $t=0$, an elevator departs from the ground with uniform speed. At time T_{1} a child drops a marble through the floor. The marble falls with uniform acceleration $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, and hits the ground T_{2} seconds later. Find the height of the elevator at time T_{1}.

Solution

Since the elevator moves at uniform speed v, it has no acceleration. The elevator floor's position from the ground after t seconds is given by

$$
y=v t,
$$

so after T_{1} seconds the elevator floor is at a height of $v T_{1}$ meters. This is the initial position of the marble when the child releases it. Its initial velocity is the velocity of the elevator. Apply the kinematic formula,

$$
y=y_{0}+v_{0 y} t+\frac{1}{2} a t^{2},
$$

for the marble's motion from the elevator floor to the ground.

$$
0=v T_{1}+v T_{2}+\frac{1}{2}(-g) T_{2}^{2}
$$

Solve this equation for v.

$$
\begin{gathered}
0=v\left(T_{1}+T_{2}\right)-\frac{g}{2} T_{2}^{2} \\
v\left(T_{1}+T_{2}\right)=\frac{g}{2} T_{2}^{2} \\
v=\frac{g}{2} \frac{T_{2}^{2}}{T_{1}+T_{2}}
\end{gathered}
$$

Therefore, the height of the elevator at time T_{1} is $v T_{1}$, or

$$
\frac{g T_{1}}{2} \frac{T_{2}^{2}}{T_{1}+T_{2}}
$$

